有没有一个服务提供商能提供人工智能全栈能力,既包含场景化人工智能基础设施、深度学习框架与工具以及人工智能PaaS平台和算法层等“有形”产品,同时也凝聚人工智能算法优化、系统优化服务等“无形”能力?
基于此考虑,浪潮集团副总裁彭震正式发布了浪潮元脑,由如下几部分组成。
超***工智能计算系统:通过浪潮人工智能计算平台、人工智能超高速计算加速卡、极低延迟RDMA网络与超高带宽并行存储,共同提供***人工智能计算性能。
敏捷人工智能Paas平台:由***优化的人工智能资源平台、极速流程化人工智能开发平台、开放兼容的人工智能生态平台和秒速构建人工智能软件栈。
***新开发的人工智能PaaS平台AIStation面向人工智能企业训练场景,可实现容器化部署、可视化开发、集中化管理等,有效打通开发环境、计算资源与数据资源,提升开发效率。
***的AutoMLSuite:***新开发的AutoMLSuite可实现非***人员亦能通过***操作构建网络模型并获得高精度,极大降低了人工智能开发、应用的门槛和成本。在2018年的NeurIPS的自动机器学习挑战赛中,浪潮与北京邮电大学、中南大学团队合作,获得自动机器学习领域的***赛事的***第三佳绩。
整合一体化交付:计算/存储/网络一体化、内置人工智能Paas平台、内置建模优化工具、预配置系统调优。
虽然元脑包含技术栈颇多,但是***重要且***基础的还是***的人工智能计算系统,本次浪潮进一步丰富了人工智能计算产品。浪潮拥有业界***全的人工智能产品线,覆盖从单机4卡到64卡集群的不同人工智能计算平台,产品涵盖GPU/CPU/FPGA等所有计算技术,覆盖了从小规模的样本训练到千亿样本、万亿参数级别的超大规模模型训练需求,能够满足人工智能云、深度学习模型训练和线上推理等各类人工智能应用场景,对计算架构性能、功耗的不同需求。从2018年以来浪潮持续发布多款人工智能创新产品,包括计算性能高达每秒2千万亿次的人工智能超级服务器AGX-5,专为智能视频分析优化设计的人工智能服务器NF5280M5-V,******集成HBM2的人工智能计算可重构加速卡F37X,支持TensorFlow的FPGA计算加速引擎TF2,人工智能开箱即用即开发的百度ABC一体机3.0。
据雷锋网观察,浪潮早在数年之前即开始向计算之上的领域扩展,浪潮元脑是浪潮综合过往技术和能力的集合体,驱动浪潮推出元脑既有客户需求,也有浪潮的战略***使然,目前业界有资源有条件的服务器厂商也在做同样的事情,仅仅提供单一计算力就有被淘汰的***,服务器行业的马太效应正在显现。
融合、开放和敏捷导向的人工智能生态
有变化就有应对,浪潮从计算力的角度出发,融合、开放与敏捷将是人工智能计算***重要的三大发展趋势,它们将对围绕人工智能计算构建而成的整个AI产业生态体系,提出新的变化和要求。
融合首先是技术的融合,随着软件定义技术的发展,计算、存储和网络三类设备开始融合为统一的融合架构模块,越来越多的运营商用搭载软件定义的通用服务器来替代原有的存储和网络设备,而一直封闭的传统电信产业也在SDN、NFVI等技术的推动下,开始与计算产业融合,开始走向融合开放。在产业层面,传统的服务器、网络和存储厂商,如戴尔、EMC、HPE、思科、浪潮等,纷纷通过并购或者拓展业务的方式,成为涵盖三大领域的数据中心全栈方案供应商。
然后是产业的融合,2018年以来,互联网和产业界巨头加大了对人工智能市场的投入,人工智能产品和服务层出不穷,行业解决方案和应用场景快速落地。人工智能将深度融合传统产业,只有通过这种大的融合、更大的产业机会,人工智能才释放出更大的潜能。
开放——在人工智能的时代里,开源的边界越来越广阔。技术层面,IT软硬件技术正在从传统的开放标准化向开源升级,在云、大数据领域,VMware、SAPHANA等商用软件还可以与Hadoop、KVM、Spark等开源软件相抗争,而到了人工智能领域,TensorFlow、Caffe等所有的计算框架均为开源,没有商用人工智能框架存在。
在硬件领域,2012-2013年,OCP和ODCC成立以后,硬件开源已经成为趋势,不仅是互联网企业将开源硬件作为主要采购对象,连高盛、中国移动等传统行业用户,也在大量部署开源硬件,以提高整个基础架构的效能。任何一个厂商都可以加入一个技术社区、企业联盟,不同的生态群彼此之间虽有竞争,但并不封闭。
敏捷——技术层面,软件定义技术隔离了应用与硬件,从而实现了基础架构层面的敏捷,可以为应用按需提供资源支持,保证用户应用的高度灵活性。
应用层面,对于互联网、电信运营商等大型用户来讲,软件定义技术更多是保证基础架构的高能效,而非灵活性,由于其业务规模超大、变化超快,基础架构对于业务的保证需要厂商在运营方面的***支持,提供全程定制化的产品和服务,需要整个产业链以更为敏捷的形态运行。
技术开放融合推动了产业层面的开放融合,技术创新的加速让产业的敏捷化程度不断提高,但同时带来了生态问题——生态发展滞后于应用需求。在人工智能的产业链中,生态将呈现百花齐放。
不管产业人工智能化,还是人工智能产业化,人工智能的目标都是驱动产业变革,技术***终要落地于行业,计算瓶颈的突破带来的是人工智能商用价值的提升,哪种生态更适于人工智能在行业的普及,哪类厂商将***先收益。人工智能基础层已经品尝到了市场的甜头,下一步将逐渐传导至中间的技术层和上层应用商,摆在人工智能从业厂商的一个现实问题,选择哪个生态?